Abstract

We argue that US welfare would rise if unemployment insurance were to be increased for young workers and decreased for old. This is because young workers have little means to smooth consumption during unemployment, and want jobs to accumulate high-return human capital. So unemployment insurance is highly valuable to them while the induced moral hazard problem is mild. We consider a life cycle model with unemployment risk and endogenous search effort, that we calibrate to match US labor market institutions. We find that allowing unemployment replacement rates and other government transfers to decline with age yields sizeable welfare gains which amount to around two thirds of the gains attained under the constrained optimal scheme for unemployment insurance over the life cycle.

*We would like to thank Manuel Arellano, Samuel Bentolila, Francisco Buera, Andrés Erosa, Hugo Hopenhayn, Enrique Kawamura, Per Krusell, Omar Licandro, Alejandro Manelli, Michael Manove, Andrés Neumeyer, Juan Pablo Nicolini, Josep Pijoan-Mas, Veronica Rappoport, Rafael Repullo and seminar participants at CEMFI, IIES, Collegio Carlo Alberto, UTDT, UDESA and IV REDg DGEM Workshop for helpful comments. A thank also goes to Raj Chetty for kindly making data available and promptly answering questions about them. Financial support from the Spanish Ministry of Science and Innovation through grant ECO2010-16726 is gratefully acknowledged. Postal address: CEMFI, Casado del Alisal 5, 28014, Madrid, Spain. E-mail: c.michelacci@cemfi.es, hruffo@cemfi.es.
1 Introduction

The principle that government transfers and taxes should be conditioned on observable, immutable indicators of skills goes back at least to Akerlof (1978). More recently Kremer (2001), Erosa and Gervais (2002), Gervais (2004), Farhi and Werning (2010), Gorry and Oberfield (2010), Mirrlees et al. (2010), and Weinzierl (2011) have also stressed the importance of conditioning labor and capital income tax rates on age when designing an efficient tax system. In principle the same logic applies for the optimal design of unemployment insurance and other labor market institutions. Indeed several important economic variables (such as wages, wealth, consumption, and unemployment duration) vary over the life cycle which suggests that workers’ incentive to search for a job as well their ability to cope with unemployment risk also vary over the life-cycle. Here we argue that, given current US labor market institutions, welfare would rise if unemployment insurance were to be increased for relatively young workers (in their mid twenties and early thirties) and decreased for old workers (in their forties and mid-fifties).

The idea is that unemployment insurance is highly valuable to young workers—because they typically have little means to smooth consumption during an unemployment spell—while the costs of the implied moral hazard problem are mild—because young workers want jobs to improve life-time career prospects, and to accumulate human capital whose marginal return is high when young. The intuition for this claim can be seen using a simple intuitive formula. Consider a government who uses one dollar to finance an increase in the level of unemployment benefits \(b \) for a given age group \(n \). Denote by \(\mu_n \) the mass of unemployed workers in the age group, by \(c_{un} \) their consumption level when unemployed and by \(u'(c_{un}) \) the associated marginal utility of consumption. If all currently unemployed workers receive a unit of money, welfare would increase by \(\mu_n u'(c_{un}) \). But standard moral hazard problems imply that more generous government transfers increase unemployment, and each unemployed worker receives benefits \(b_n \). So a marginal increase in government transfers yields only \(1/ [\mu_n + b_n d\mu_n/db_n] = 1/ [\mu_n(1 + \eta_n)] \) units of income to a currently unemployed worker, where \(\eta_n \) is the elasticity of group \(n \) unemployment to the corresponding unemployment benefits. By multiplying the two terms we find the following welfare gains from the marginal change in government transfers:

\[
\varrho_n = \frac{u'(c_{un})}{1 + \eta_n}.
\]

Intuitively the numerator measures the marginal value of the additional insurance provided to unemployed workers, the denominator the incentive costs of the induced moral hazard problem. Generally a revenue neutral change in unemployment insurance that increases benefits for a given age group \(n \) while decreases them for another
age group m is welfare improving whenever $\varrho_n > \varrho_m$, which can be used to identify possible gains from redistributing unemployment insurance over the life cycle.

To document how ϱ_n varies across age groups, we first use data from the Panel Study of Income Dynamics (PSID) to document that consumption of unemployed workers is strictly increasing in age. Roughly speaking an unemployed worker in his thirties consumes 20 per cent less goods than an unemployed worker in his late fifties. We also use data from the Current Population Survey (CPS) and from the Survey of Income and Program Participation (SIPP) to analyze how the unemployment level of different age groups responds to changes in unemployment benefits. As in Chetty (2008) we exploit changes in the level of benefits within US states over time. We find that, while the unemployment elasticity to unemployment benefits is small and statistically insignificant for workers in their mid twenties and early thirties, the elasticity is positive and significant for workers in their mid forties and fifties. Gritz and MaCurdy (1992) also document that changes in benefits have insignificant effects on the unemployment level of young workers. This evidence indicates that providing additional insurance to young worker is highly valuable, while the incentive costs of the induced moral hazard problem are small, which implies that ϱ_n is unambiguously larger for young than for old workers.

The data also provide more direct evidence that unemployment insurance is highly valuable to young workers and it has small moral hazard costs. We show that consumption losses upon unemployment are more pronounced for young than for old workers, which indicates that young workers have little ability to smooth consumption during unemployment and require more liquidity and insurance. Chetty (2008) notices that the effects of benefits on the unemployment of wealthy workers—who arguably have great ability to smooth consumption during unemployment—measures the severity of the moral hazard problem. We find that the unemployment of old workers with high level of assets is highly affected by benefits, while the unemployment level of young wealthy workers is little sensitive to benefits. This suggests that the moral hazard problem is severe for old workers while it is minor for young workers. This squares well with the idea that young workers want jobs not only to increase current income net of benefits but to acquire labor market skills and to improve working life career prospects, which is coherent with the evidence in Topel and Ward (1992).

To study the magnitude of the potential welfare gains of age dependent unemployment insurance we consider a conventional life cycle model with decreasing returns to labor market experience and ongoing unemployment risk. Workers are born with no human capital and no assets and can save in a riskless bond. When employed, they accumulate human capital, they receive wages and pay income taxes that are used to finance the unemployment insurance program and retirement pen-
sions. Workers can lose their job and when unemployed they choose how intensively to search for a new job. During unemployment they receive unemployment benefits which are a constant fraction of past wages. The model is calibrated to match US labor market institutions and other key features of the life cycle of workers.

We optimally choose age-dependent replacement rates and/or income tax rates to maximize the worker’s initial expected utility.\(^1\) We find that under the optimal age dependent policy, replacement rates are increased from the current value of 50 per cent to around 80 percent for workers in their mid twenties and to 70 per cent for workers in their thirties. Workers in their forties and in their fifties, instead, obtain benefits equal to 40 and 20 percent of their past wage, respectively. When allowing for just either age-dependent replacement rates or age dependent income tax rates, welfare gains are approximately equivalent to a 1 percent increase in lifetime consumption. When we combine age-dependent unemployment insurance with age-dependent taxes, gains go up to an equivalent of a 3 percent increase in lifetime consumption, which implies important complementarities between the two policies.

To analyze whether age dependent policies exhaust an important part of the existing unexploited gains present in the current US system, we consider the problem of an agency that optimally choose benefits, taxes and pensions as function of the entire worker’s history. As in Hopenhayn and Nicolini (1997), the agency can observe workers’ assets but not search effort, so unemployment insurance induces moral hazard problems. Following Spear and Srivastava (1987), we solve the problem using worker’s promised continuation utility as a sufficient statistic for worker’s history. The solution yields some insights about the gains from age dependent policies. As in Hopenhayn and Nicolini (1997), benefits and reemployment wages net of taxes decrease with the duration of the current unemployment spells to give workers better incentives to search for a job. Interestingly benefits and net income decrease faster for old than for young worker. This is because old workers are more productive, so having them idle is more costly from a social point of view. As a result, replacement rates are on average decreasing in age while taxes are increasing. In principle age dependent policies can only imperfectly reproduce the solution of the optimal program. We surprisingly find that the combination of age-dependent unemployment insurance with age-dependent taxes yields gains that amounts to more than two thirds of the welfare gains obtained under the optimal program.

Relation to the literature Using different methodologies, several authors have argued that the level of unemployment benefit is close to optimal in the US, see for example

\(^1\)An alternative would be to have replacement rates and taxes being conditioned on the current level of assets rather than on age. Although this policy would distort saving incentives and it is in principle inferior to an age dependent policy, it could still yield important welfare gains. This is one of the point made by Conesa, Kitao, and Krueger (2009) and Rendahl (2009).
Davidson and Woodbury (1997), Shimer and Werning (2007), Pavoni (2007), and Chetty (2008). Our results show that, although benefits are optimal on average, there are still sizable welfare gains from redistributing unemployment insurance over the life cycle—increasing it for young and decreasing it for old.

This paper relates to the ongoing literature that starting with Hopenhayn and Nicolini (1997) has analyzed the optimal design of labor market institutions, see also Pavoni and Violante (2007), Shimer and Werning (2008), Rendahl (2009), and Pavoni, Setty, and Violante (2010). The literature typically focuses on the problem of an initially unemployed worker who becomes permanently employed after finding his first job. With the exception of Hopenhayn and Nicolini (2009) the issue of recurrent unemployment spells is typically neglected. The literature has also abstracted away from life cycle considerations, which is the main focus of this paper. In particular we emphasize the importance of non linear returns to labor market experience, which we find is important to explain why the moral hazard problem for unemployed young workers is mild.\footnote{The issue of the endogenous accumulation of human is emphasized also by Shimer and Werning (2006) and Pavoni (2009) who study how search incentives are affected by human capital depreciation during unemployment.}

Baily (1978) and Chetty (2006) have proposed a simple intuitive formula to evaluate whether unemployment benefits are optimal on average. Our formula is similar to theirs but it focuses on possible gains from redistributing unemployment insurance over the life-cycle or more generally across any groups of workers classified by observable, immutable skill characteristics including gender or race. Our formula holds exactly in the simple stylized life cycle model of Section 2. But the quantitative analysis also indicates that the formula works well in more conventional life cycle models typically used for quantitative analysis: after finding the optimal age dependent policy, we find that φ_n becomes almost invariant across age groups, which indicates that the formula correctly identifies existing gains from redistributing unemployment insurance over the life-cycle.

Shimer and Werning (2007) have criticized the Baily’s formula on the grounds that its use relies on specifying highly controversial preference parameters. Our formula, is less subject to their criticism in that its ability to identify redistributions gains just relies on signing the relative magnitude of φ_n across skill groups. This is often possible by just comparing unemployment elasticities and consumption levels when unemployed across skill groups, without having to specify any preference parameter.

Chéron, Hairault, and Langot (2008a, 2008b) have studied the role of age dependent labor market policies in a Mortensen and Pissarides (1994) search model with finitely lived workers. Our paper is obviously related to theirs but with some
important differences. They emphasize the demand side of the labor market and
the role of age-dependent policies in solving the conventional search inefficiencies in
vacancy creation typically present in random search models; see Pissarides (2000)
for an introduction to these class models. Search inefficiencies naturally vanish in
extended versions of the search model where firms post wage contracts, workers ob-
serve them and direct search accordingly, see for example Moen (1997), Acemoglu
and Shimer (2001), and Shimer (2005). Here we emphasize labor supply effects and
that the trade-off between the gains from unemployment insurance and the incentive
costs of the induced moral hazard problem varies over the life cycle.

Section 2 discusses a simple life cycle model where the formula in (1) holds
exactly. Section 3 contains preliminary evidence. Section 4 presents the quantitative
life-cycle model. Section 5 solves for the optimal unemployment insurance problem.
Section 6 considers age dependent policies. Section 7 discusses robustness. Section
8 concludes. The Appendix provides details on data and computation.

2 A simple model

We present a simple stylized life-cycle model where our formula holds exactly. We
later show that the formula also works well in a more conventional life-cycle model
more suitable for quantitative analysis. In this simple model workers live for six
periods \(n = 0–5 \). They are young, \(j = y \), during the first three \(n = 0–2 \), and old,
\(j = o \), during the last three \(n = 3–5 \). Unemployment is the only source of risk
in the model. Workers are employed with probability one in all periods except in
period one and four when they have to search for a job. This characterizes the
fact that unemployment risk is recurrent, it affects both young and old, and it has
transitory effects. Unemployment is endogenous due to endogenous search intensity.
Search intensity reduces the probability of unemployment and the amount of leisure
enjoyed by the worker. We assume that a worker who is unemployed with probability
\(\mu \) at the end of period one or four enjoys utility from leisure equal to \(\psi_j(\mu) \), with
\(\psi_j'(\mu) > 0 \) and \(\psi_j''(\mu) < 0 \). Notice that the function \(\psi_j, j = y, o \), could be age-
specific, to account for possible differences in the demand for workers of different
age, which can affect their unemployment probability. Workers initially have no
wealth. They can not borrow but they can save by investing in a riskless bond that
pays a constant interest rate equal to the subjective discount rate of workers, both
normalized to zero. Wages in period \(n \) are equal to \(w_n \). Following well established
evidence from wage regressions, we assume that wages increase with experience when
young, while they are flat when old, \(w_0 < w_1 < w_2 < w_3 = w_4 = w_5 \). If unemployed
at age \(j = y, o \) (end of period one or four) workers obtain unemployment benefits
\(b_j \). Consumption utility in a period is \(u(c) \).
We assume that consumption is equal to income for young workers: a young worker expects future increases in labor income and would like to borrow to smooth consumption, but he cannot due to the borrowing constraint. This simplifying assumption implies that old workers’ consumption is unaffected by the employment history when young, which in turn guarantees that changes in benefits when young (old) do not affect unemployment when old (young). This separability property is required for the formula to hold exactly. The quantitative analysis below shows that the property holds well also when young workers do save and borrow.

Let \(V(n,a) \) denote the expected utility of a worker in period \(n \) with wealth \(a \), where \(V(n,a) \equiv 0, n \geq 6 \). A young worker in period \(n = 0,2 \) is employed for sure, he has no wealth, and his expected utility solves \(V(n,0) = u(w_n) + V(n+1,0) \), while his utility in period \(n = 1 \) (when he has to search for a job) satisfies

\[
V(1,0) = \max \psi_y(\mu) + \mu [u(b_y) + V(2,0)] + (1 - \mu) [u(w_1) + V(2,0)]
\]

which takes into account that with probability \(\mu \) the worker is unemployed with income \(b_y \) while with probability \(1 - \mu \) the worker is employed with income \(w_1 \). Similarly the utility of an old worker when he is employed for sure, \(n = 3, 5 \), solves

\[
V(n,a) = \max c \ u(c) + V(n+1,a+w_n-c)
\]

while his utility when he has to search for a job, \(n = 4 \), satisfies

\[
V(4,a) = \max \psi_o(\mu) + \mu [u(c_o) + V(5,a+b_o-c_u)] + (1 - \mu) [u(c_e) + V(5,a+w_4-c_e)]
\]

which is analogous to (2).

The government chooses \(b_j, j = y,o \) so as to maximize worker’s initial expected utility \(V(0,0) \) subject to the budget constraint:

\[
\sum_{j=y,o} \mu_j b_j = T
\]

where \(T \) is some exogenous government income used to finance the unemployment insurance program. In the quantitative model below this income is obtained by taxing labor.

Let \(\lambda \) denote the shadow value of one unit of government money, as measured by the Lagrange multiplier of the budget constraint in (3). By taking the first order

\textit{Footnote} Even if wages are growing and the interest rate is zero, young workers might want to accumulate some precautionary savings to insure the risk of unemployment in period one. Here we assume that the demand for consumption smoothing dominates the precautionary savings motive. The formal condition involves a simple inequality for the traditional Euler equation for consumption that we omit for brevity.
condition with respect to b_j, $j = y, o$, and after using the envelope theorem, we obtain that it is optimal to increase b_j if

$$\varrho_j \equiv \frac{u'(c_{uj})}{1 + \eta_j} > \lambda$$

(4)

where c_{uj} denotes consumption while unemployed for a worker of age j, while $\eta_j \equiv \frac{d \ln \mu_j}{d \ln b_j}$ is the unemployment elasticity to benefits. The ratio in the left hand side is the net welfare gain of marginally increasing government transfers to unemployed workers of age j: the numerator measures the value of the additional insurance provided; the denominator the cost of the induced moral hazard problem. Notice that, if young workers were not hand-to-mouth consumers, the numerator would remain unchanged—again due to the envelope theorem— while the denominator would have to be modified slightly since changes in b_y and b_o would affect μ_o and μ_y, respectively. In the quantitative model we find that these cross-derivatives are small. Clearly (4) implies that there are welfare gains from increasing transfers to young unemployed workers at the expense of the old whenever

$$\varrho_y > \varrho_o.$$

(5)

3 Some empirical evidence

We now show that in the US the unemployment elasticity to Unemployment Insurance (UI) benefits and the consumption while unemployed are both lower when young than when old. This indicates that inequality (5) holds both because young workers’ incentives to search for a job are less affected by benefits—the denominator in (4) is smaller for young than for old—and because young workers value unemployment insurance more—the numerator is higher. We then provide more direct evidence i) that the moral hazard problem induced by unemployment insurance is mild for young workers, and ii) that young workers have little means to smooth consumption during unemployment and thereby value highly the insurance and liquidity provided by UI benefits.

3.1 Unemployment elasticity to benefits

We analyze the effects of UI benefits on the unemployment of workers of different age by first using unemployment duration models for individual data and then using aggregate evidence from US states.

3.1.1 Unemployment duration models

We use individual data from the Survey of Income and Program Participation (SIPP) over the period 1985-2000. Each SIPP panel surveys households at four month
intervals for 2-4 years and contains information on employment status at the weekly frequency and UI benefit receipt. The sample selection criteria are exactly as in Chetty (2008): we restrict attention to prime-age males who have taken up UI benefits after a job loss, are not on temporary layoff, and have at least three months of work history in the survey (so pre-unemployment wages can be computed). To measure UI benefits we use two statistics provided by Chetty (2008): one is the average benefits in each state and year as reported by the Department of Labor; the other is an imputation of individual benefits using the simulation program by Cullen and Gruber (2000). The Appendix discusses further details of the data.

We start splitting the sample in two age groups depending on whether workers have 20 to 40 or 40 to 60 years of age. The split by age is justified by the fact that, after 40 years of age, the return to labor market experience substantially flattens while assets increase significantly. We show later that this matters for determining the insurance value and the moral hazard costs of unemployment insurance. We later consider a finer disaggregation by age. For each sample, we estimate the following semi-parametric Cox regression model for unemployment duration:

$$\ln h_{it} = \beta \ln b_{it} + \theta X_{it} + err.$$ (6)

where \(i\) denotes the worker, \(t\) the duration of the current unemployment spell, \(h_{it}\) is the job finding probability at unemployment duration \(t\), \(b_{it}\) is the level of UI benefits, and \(X_{it}\) are set of controls including worker’s age, years of education, family status, previous job tenure, a spline in past logged wages, dummies for year, states, and unemployment duration and the interaction of benefits with unemployment duration. The effects of benefits are identified using a difference in difference strategy that exploits changes in the UI regulation of US states through time.

Table 1 reports the results. Panel (a) uses average benefits, panel (b) individual benefits. The first column of each panel deals with the full sample estimates, that are analogous to those in Chetty (2008). Here the elasticity of the job finding probability to benefits is very close to one half and strongly statistically significant. The results in the following two columns show that the full sample estimates in Chetty (2008) reflect some important heterogeneity across workers of different age. When considering the sample of workers from 20 to 40 years of age the effects of benefits on job finding are

4Chetty (2008) also provides a measures for the maximum level of benefits in the state. This measure is less relevant for our analysis since the maximum benefit level might be more or less binding depending on the worker’s wage which is positively correlated with his age. In any case results are little changed when using this alternative measure.

5Of course some changes could be endogenous for example because states are more likely to increase benefits when unemployment is high. To address the relevance of this concern, we conducted a placebo test similar to Chetty (2008): we estimate the Cox model in (6) using the sample of workers who did not take up UI benefits and we find that in this sample benefits have no statistically significant effects on unemployment duration.
Table 1: Job finding elasticity to benefits, SIPP data

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>20-40 yrs</th>
<th>41-60 yrs</th>
<th>All</th>
<th>20-40 yrs</th>
<th>41-60 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln ben.</td>
<td>-.53**</td>
<td>-.37</td>
<td>-1.34***</td>
<td>ln ben.</td>
<td>-.36***</td>
<td>-.22</td>
</tr>
<tr>
<td>(.27)</td>
<td>(.33)</td>
<td>(.49)</td>
<td>(.11)</td>
<td>(.16)</td>
<td>(.19)</td>
<td></td>
</tr>
<tr>
<td>N.</td>
<td>4560</td>
<td>2873</td>
<td>1522</td>
<td>N.</td>
<td>4529</td>
<td>2858</td>
</tr>
</tbody>
</table>

Notes: Estimates of β in the Cox duration model (6) using SIPP data. In panel (a) benefits are state-year averages, in panel (b) are individually imputed using the simulation program by Cullen and Gruber (2000). First column deals with full sample, second and third with workers of age from 20 to 40 years, and from 40 to 60 years, respectively. Robust standard errors in parenthesis. "**" indicates significance at 1%, "*" at 5%, "*" at 10%.

quantitatively small and not statistically significant for either measure of benefits. In the sample of older workers the estimated elasticity is instead close to one and strongly statistically significant with either benefits measure.\(^6\)

We now split the data into finer age group of workers. To maintain sample size, we estimate the duration model in (6) using eight partly overlapping samples of workers with age differences of ten years. To measure the unemployment elasticity to benefits, we use the relation $d \ln u / d \ln b = - (1 - u) d \ln f / d \ln b$, where u and f are the sample average of the unemployment rate and finding rate, respectively. The relation is exact if benefits affects unemployment only through the job finding rate. Figure 1 reports the resulting unemployment elasticity. Panel (a) uses average benefits, panel (b) individual benefits. The dotted lines represent 90 percent confidence intervals calculated using delta methods. When considering the average measure of benefits, the estimated unemployment elasticity is close to zero for workers below forty while it is around one and a half for workers in their mid forties and early fifties. For workers close to retirement the unemployment elasticity falls close to zero. The results are similar when measuring benefits at the individual level, although now the elasticity is significantly different from zero also for workers in their twenties and thirties.

3.1.2 US states aggregate evidence

So far we have focused on how UI benefits affects the job finding rates of unemployed workers. But benefits can affect unemployment through labor force participation or through the unemployment inflow rate. Benefits could also have some aggregate equilibrium effects not properly measured when using individual unemployment du-

\(^6\)We checked that results are robust to including as controls the log of individual wealth or of net liquid assets at the time of the job loss, or to using a Weibull model for unemployment duration. We have also split the sample in three educational groups (college graduates, some high school, less than high school) and found similar results in each of the three groups.
Notes: Unemployment elasticity to benefits for different age groups of workers. Estimates\nbased on model (6) using SIPP data. Unemployment elasticities are calculated using the\nformula $\frac{d \ln u}{d \ln b} = - (1 - u) \frac{d \ln f}{d \ln b}$, where u and f are the sample average of the unemployment\nrate and finding rate, respectively. Panel (a) uses average state benefits, panel (b) individual\nbenefits. Dotted lines are 90 percent confidence intervals.

To address some of these concerns, we use US states aggregate\nunemployment data. The idea is to consider each state as a somewhat separate\nlabor market with different unemployment insurance laws. We then use monthly\ndata from the Current Population Survey (CPS) to calculate UI benefits and unem-
ployment over population ratios by age groups for each state and semester in the\nyears from 1984 to 2000. We restrict the sample to male workers with 16 to 64 years\nof age. To construct a measure of benefits by state, semester in the year and age,\nwe impute pre-unemployment wages for each unemployed worker and then calculate\nindividual benefits using the UI benefits calculator from Cullen and Gruber (2000).\nPre-unemployment wages are imputed using a conventional wage regression which is\nestimated in each state and year with the March CPS survey.\n
For each age group in\na given state and period we calculate the average UI benefit and pre-unemployment\nbenefits, that we use to estimate the following regression model:\n
$$\ln u_{itj} = \sum_{n} \beta_n q^n_j \ln b_{itj} + \theta X_{itj} + \text{err.} \quad (7)$$

where i stands for state, t for period and j for age group, u_{itj} is the unemployment\nover population ratio of age group j in state i in period t, q^n_j is a dummy variable

\footnote{The dependent variable of the wage regression is logged weekly wages and the independent\nvariables are a quadratic polynomial in age, four educational dummies, two race dummies, and a\nmarital status dummy.}
which is equal to one if the observation corresponds to age group \(n \), \(b_{ij} \) is the imputed average benefit level deflated with the CPI index. The variables \(X_{ij} \) are a set of controls, including time, state, and age group dummies, the imputed logged average pre-unemployment wages, the proportion in the group of white, of married workers, of workers with working spouse, and of unemployed workers with five different educational levels. Standard errors are clustered at the state level, since different US states are considered as (at least) partially segmented labor markets.

Figure 2 plots the estimated unemployment elasticity to benefits for different age groups of workers, as measured by the \(\beta_n \) coefficients in (7). Dotted lines are ninety percent confidence intervals. The left panel reports the OLS estimates. The right panel are the analogous estimates where benefits are instrumented using their own three years lagged value, in an attempt to control for possible endogeneity problems—for example because the average replacement rates changes over the business cycle due to changes in the composition of the pool of unemployed. The OLS estimates indicate that unemployment elasticity are increasing by age. They are very close to zero for workers in their twenties and around 0.7 for workers in their fifties. With IV the age profile remains unchanged but elasticities become larger and more in line with the results from the individual unemployment duration analysis in Figure 1. This is consistent with the idea that changes in the composition of the pool of unemployed workers makes replacement rates increase in recessions.

Figure 2: Unemployment elasticity to benefits by age group, aggregate data

(a) Unemployment elasticity, OLS

(b) Unemployment elasticity, IV

Notes: Estimates of \(\beta_n \) in (7) using US states aggregate unemployment data from CPS. Left panel are OLS estimates, right panel are IV estimates where current benefits are instrumented using its own lagged three years value. Dotted lines are 90 percent confidence intervals.
A difference relative to the individual unemployment duration analysis, is that the elasticity is no longer close to zero for workers close to retirement, possibly due to aggregation problems.\(^9\)

3.2 Consumption while unemployed

To estimate how the consumption of unemployed workers varies with age, we use data from the Panel Study of Income Dynamics (PSID). Consumption is measured using either food consumption, that is reported directly from PSID, or the imputation for total consumption expenditures in non durables goods from Blundell, Pistaferri, and Preston (2008). Food consumption is the average weekly per capita expenditures in the household on food at home. As argued by Blundell, Pistaferri, and Preston (2008) people typically report their food expenditures in an average week around the week of the survey. Nondurable consumption is the analogous average for the sum of expenditures in food, alcohol, tobacco, services, heating fuel, transport, personal care and clothing and footwear. Sample selection is as in Blundell, Pistaferri, and Preston (2008), who focus on continuously married couples headed by a male with 21 to 60 years of age with no dramatic changes in family composition over the sample period. These restrictions are intended to control for dramatic exogenous shocks unrelated to changes in employment status. We then run the following regression:

\[
\ln c_{it} = \sum \beta_n e_{nit} + \sum \beta_u u_{nit} + \theta X_{it} + \text{err.} \tag{8}
\]

where \(i\) denotes the worker, \(t\) is the year, \(c_{it}\) is consumption per capita in the household, \(e_{nit}\) and \(u_{nit}\) are employment status dummies that are equal to one if, at the interview date, the household head of age \(n\) is employed or unemployed, respectively. Finally \(X_{it}\) are set of controls, including state and time dummies, number of kids in the household and the total number of household members.

Figure 3 shows the estimated age profile of consumption of employed workers as a dashed line and of unemployed workers as a solid line. Panel (a) deals with food consumption, panel (b) with total consumption in nondurables. Consumption increases with age reaching a peak between 51 and 55 years of age. Consumption of unemployed workers also increases with age and it is always lower than consumption of employed workers. Figure 3 plots the cumulative distribution function of consumption when unemployed for several age groups of workers, as implied by (8).

\(^9\)We checked that results are robust to the inclusion of the maximum duration of benefits as additional controls or to using the lagged value of benefits rather than its contemporaneous value as independent variable, see Table 10 in the Appendix.

see Mueller (2010) for recent evidence.
Panel (c) deals with food consumption, panel (d) with total consumption in non-durables. Either figure indicates that consumption is higher for older workers in the first order stochastic dominance sense, which is even stronger evidence for the claim that consumption of unemployed workers increases with age.\(^\text{10}\)

Figure 3: Food and total consumption by age, PSID

(a) Average food consumption
(b) Average total consumption

(c) CDF food consumption
(d) CDF total consumption

Notes: Life cycle profile of per capita consumption. Left column is for food consumption, right column for total consumption expenditures in nondurables. The second row reports empirical CDF for the consumption level of unemployed workers of different age. Results come from estimating (8) using PSID data.

3.3 Moral hazard and liquidity effects

The previous results indicate that unemployment insurance induces mild incentive costs and it is highly valuable to young workers. We now provide more direct evi-

\(^{10}\)We checked that results are robust to including temporary laid off workers in the pool of unemployed workers, to weighting observations, to using total expenditures in food either at home or out of home (rather than just food at home), and to dropping observations with consumption levels below the bottom or above the top percentile of the consumption distribution.
idence that i) the moral hazard problem induced by unemployment insurance is mild for young workers and ii) that young workers value highly unemployment insurance because they have little means to smooth consumption during unemployment.

Moral hazard effects by age As shown by Chetty (2008), UI benefits increase unemployment duration due to a conventional moral hazard effect—benefits reduce the net income gains from finding a job—and due to a liquidity effect—benefits allow to better equalize the marginal utility of consumption when employed and when unemployed. So the evidence that the unemployment elasticity to benefits increases with age does not necessarily indicate that the moral hazard problem is milder for young than for old workers. To identify moral hazard effects Chetty (2008) argues that workers with high asset levels have great ability to smooth consumption during unemployment. For these workers, liquidity effects are absent and benefits increase unemployment just due to moral hazard. To pursue this logic, we use the SIPP data and analyze how benefits affects the unemployment probability of wealthy workers of different age. In Figure 4, we plot Kaplan-Meier survival probability of remaining unemployed for ‘young’ workers (20-40 years of age) and ‘old’ workers (40-60 years of age) with wealth levels in the bottom quartile (left column) and top quartile (right column) of the distribution of wealth. Wealth is measured as liquid assets net of unsecured debt at the time of job loss. Panels (a) and (b) are for ‘young’ workers, panels (c) and (d) are for ‘old’ workers. In each panel, the solid and dashed line are the survival curves for workers in states with benefits above and below the corresponding sample median, respectively. Panels (b) and (d) indicate that the effects of benefits on the unemployment probability of wealthy workers vary by workers’ age. For young wealthy workers UI benefits have no significant effects on unemployment: the Wilcoxon test fails to reject the null hypothesis of equality in survival curves of workers with benefits above and below the median. For old wealthy workers the two survival curves do differ and the Wilcoxon test marginally rejects the null hypothesis that the two survival curves are equal. This is prime facie evidence that the moral hazard problem induced by unemployment insurance are more severe for old than for young workers.

To better analyze how wealth affects the relation between job finding and benefits for workers of different age, we estimate the following Cox model analogous to (6):

\[
\ln h_{it} = \sum_n \beta_n q_{it}^n \ln b_{it} + \theta X_{itj} + \text{err}. \quad (9)
\]

where \(q_{it}^n \) is an indicator variable that is one if worker’s wealth is in quartile \(n \) (with higher \(n \) indicating greater wealth). Controls are as in the estimation of equation (6) with the additional inclusion of wealth dummies and their interaction.
with unemployment duration. Table 2 reports the estimated β_n coefficients in the full sample, and in the samples of ‘young’ and ‘old’ workers. The Cox duration analysis confirms that benefits reduces job finding rates of old workers with assets in the top third or fourth quartile of the wealth distribution. The effects are somewhat stronger when measuring benefits with state averages. Overall this evidence is consistent with the claim that the moral hazard problem of unemployment insurance is more important for old than for young workers.

Liquidity effects by age Panel (a) in Figure 4 and Table 2 provide some evidence that UI benefits increase the unemployment probability of young poor workers,
Table 2: Job finding elasticity to benefits by assets, SIPP

(a) Average UI benefits

<table>
<thead>
<tr>
<th></th>
<th>All 20-40 yrs</th>
<th>41-60 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_1 \times \ln \text{ ben.}$</td>
<td>-.98***</td>
<td>-.78</td>
</tr>
<tr>
<td></td>
<td>(.40)</td>
<td>(.57)</td>
</tr>
<tr>
<td>$Q_2 \times \ln \text{ ben.}$</td>
<td>-.73*</td>
<td>-.58</td>
</tr>
<tr>
<td></td>
<td>(.42)</td>
<td>(.48)</td>
</tr>
<tr>
<td>$Q_3 \times \ln \text{ ben.}$</td>
<td>-.48</td>
<td>.05</td>
</tr>
<tr>
<td></td>
<td>(.36)</td>
<td>(.52)</td>
</tr>
<tr>
<td>$Q_4 \times \ln \text{ ben.}$</td>
<td>.10</td>
<td>1.16</td>
</tr>
<tr>
<td></td>
<td>(.47)</td>
<td>(.73)</td>
</tr>
<tr>
<td>N.</td>
<td>4054</td>
<td>2498</td>
</tr>
</tbody>
</table>

(b) Individual UI benefits

<table>
<thead>
<tr>
<th></th>
<th>All 20-40 yrs</th>
<th>41-60 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_1 \times \ln \text{ ben.}$</td>
<td>-.64***</td>
<td>-.55*</td>
</tr>
<tr>
<td></td>
<td>(.24)</td>
<td>(.30)</td>
</tr>
<tr>
<td>$Q_2 \times \ln \text{ ben.}$</td>
<td>-.76***</td>
<td>-.92***</td>
</tr>
<tr>
<td></td>
<td>(.22)</td>
<td>(.23)</td>
</tr>
<tr>
<td>$Q_3 \times \ln \text{ ben.}$</td>
<td>-.56***</td>
<td>-.31</td>
</tr>
<tr>
<td></td>
<td>(.15)</td>
<td>(.24)</td>
</tr>
<tr>
<td>$Q_4 \times \ln \text{ ben.}$</td>
<td>.02</td>
<td>.66*</td>
</tr>
<tr>
<td></td>
<td>(.26)</td>
<td>(.35)</td>
</tr>
<tr>
<td>N.</td>
<td>4054</td>
<td>2498</td>
</tr>
</tbody>
</table>

Notes: Estimates of β_n in the Cox model (9) using SIPP data. Q_j, $j = 1, 2, 3, 4$ are the quartile of the wealth distribution in the corresponding sample. Further details are as in Table 1.

especially when focusing on the individual measure of benefits. This is coherent with the idea that UI benefits provide some valuable liquidity to young workers which allow them to better smooth consumption during unemployment. We now provide two additional pieces of evidence consistent with this view. We first borrow from Chetty (2008) the idea that severance payments provide some liquidity to unemployed workers with no moral hazard costs. By comparing the search behavior of unemployed workers who have received severance payments with the behavior of similar workers who have not, we can identify the importance of liquidity effects. We use surveys data collected by Mathematica on behalf of the Department of Labor, which contain information on whether displaced workers have received severance payments at the time of the job loss. The sample selection criteria mimic those used with the SIPP data: we focus on the search behavior of permanently displaced male workers with complete data on tenure and severance pay, see Appendix for details. The final sample comprises 2441 spells, 18% of them for workers who have received some severance payment. With these data we estimate the following Cox hazard model for unemployment duration analogous to (6):

$$\ln h_{it} = \beta \text{Sev}_i + \theta X_{it} + \text{err.}$$

(10)

where Sev_i is an indicator variable which is equal to one if the displaced worker has received some severance payment. The additional controls X_{it} include worker’s age, four education dummies, a spline in past tenure, one in past wages, the log of unemployment benefits, fixed effects for state, occupation and industry, unemployment

11Policies about severance payments vary by firms with a common package typically offered to all firm employees, see Lee Hecht Harrison (2001). Severance payments are usually related to tenure. Many companies requires a minimum level of job tenure to grant severance payment and, beyond that threshold, pay around one week of wages per year of tenure.
duration dummies and their interaction with severance payments. Again the model is estimated for the full sample and for the two age groups of workers. The resulting estimate for β is reported in Table 3. The first column reproduces the full sample results in Chetty (2008), which indicate that unemployed workers with severance pay experiences a percentage reduction in job finding rates of around one quarter. When we split the sample by workers’ age we find that the reduction in finding rates for young workers is around one third, while for old workers it is close to zero and not statistically significant at conventional levels. This is coherent with the idea that young workers have little means to smooth consumption during unemployment.

Table 3: Job finding elasticity to severance pay, Mathematica data

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>20-40 yrs</th>
<th>41-60 yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sev. pay</td>
<td>(-0.23^{***})</td>
<td>(-0.32^{***})</td>
<td>(-0.06)</td>
</tr>
<tr>
<td></td>
<td>(0.07)</td>
<td>(0.09)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>N.</td>
<td>2428</td>
<td>1514</td>
<td>840</td>
</tr>
</tbody>
</table>

Notes: Estimates of β in (10) using Mathematica data. First column deals with full sample, second and third with workers of age from 20 to 40 years, and from 40 to 60 years, respectively. Standard errors clustered by state in parentheses. “****” indicates significance at 1%, “***” at 5%, “**” at 10%.

The age pattern of consumption losses upon unemployment also indicates that young workers find difficult to smooth consumption during unemployment. To estimate consumption losses, we follow Gruber (1997) and estimate equation (8) but now including individual fixed effects and a dummy variable characterizing a change in employment status from employment to unemployment. The coefficient of the change in employment status characterizes the size of the average consumption loss upon unemployment. We allow this effect to vary by age. Figure 5 shows the age profile of consumption losses for food consumption (left panel) and total consumption (right panel). Consumption losses are around 17% for workers in their twenties and thirties and fall to less than 5% for workers in their fifties and sixties.\(^{12}\) Consumption losses are slightly larger when considering total consumption expenditures in nondurables, but the age profile is similar. This is again evidence coherent with the idea that young workers have little precautionary savings and limited liquidity to smooth consumption during unemployment, which is coherent with the evidence

\(^{12}\)There are several papers that have measured consumption losses upon unemployment. Gruber (1997) uses PSID data and finds average food consumption losses upon unemployment of around 7%; Browning and Crossley (2001) use Canadian data and reports losses of around 14% in total consumption expenditures. Similar results are found by Bloemen and Stancaelli (2005) using UK data and by Sullivan (2008) again with the PSID. All authors point out that these average estimates are the result of aggregating vastly different individual consumption responses. Our results show that part of this heterogeneity is due to the life cycle.

Figure 5: Consumption losses upon unemployment

![Figure 5: Consumption losses upon unemployment](image)

(a) Food consumption losses
(b) Total consumption losses

Notes: Consumption losses upon unemployment by age, PSID data. Dotted lines are 90 percent confidence intervals.

4 Laboratory economy

We now consider a life cycle model with ongoing unemployment risk that we use as a laboratory economy to answer two questions. First we study the magnitude of the potential welfare gains of age dependent unemployment insurance. Second we compare these gains with those attained under the constrained optimal scheme for unemployment insurance over the life cycle. We first characterize the economy and its equilibrium conditions. Then we turn to calibration and discuss key properties of the calibrated economy.

4.1 Assumptions

Workers live for \(\bar{n}_w + \bar{n}_r \) periods. They are active in the labor market in the first \(\bar{n}_w \) periods, retired in the last \(\bar{n}_r \) periods. Workers have discount factor \(\beta \) and receive utility from consumption \(u(c) = \frac{c^{1-\sigma}}{1-\sigma} \), with \(\sigma > 0 \). They are born with no job, no human capital, \(e = 0 \) and no assets \(a = 0 \) and can save in a riskless bond who pays a constant interest rate \(r \) that satisfies \(\beta = \frac{1}{1+r} \). Workers have limited ability to borrow and their assets cannot be lower than the borrowing threshold \(l \). In each period of employment, workers accumulate one unit of human capital and they receive wages \(w(e) \) that satisfies \(w' > 0 \) and \(w'' < 0 \). This formalizes the notion that there are positive but decreasing returns to labor market experience. Employed workers lose their job with probability \(\delta \) and when unemployed they choose how intensively to
search for a new job. Search intensity reduces the probability of unemployment and the amount of leisure enjoyed by the worker. We assume that a worker who receives job offers with probability $1 - \mu$ enjoys utility from leisure $\psi(\mu)$, with $\psi'(\mu) > 0$ and $\psi''(\mu) < 0$. Here μ denotes the within period unemployment probability of a worker searching for a job. We adopt the same timing convention as in Lentz and Tranaes (2005) and Chetty (2008), whereby successful search in a period leads to a job in the same period. Unemployment is the only source of risk in the model. If unemployed at the end of the period, workers receive unemployment benefits which are a fraction ρ of their wage. During the last \bar{n}_r periods, workers receive pensions which are a fraction π of workers’ wage at the time of retirement. This is a simplified characterization of the US pensions system. During employment, workers pay income taxes that are a fraction τ of their labor income. Taxes are used to finance the unemployment insurance program and retirement pensions. Government budget is balanced.

4.2 Equilibrium conditions

Let $c^*(e, a, a') = (1 - \tau)w(e) + (1 + r)a - a'$ denote the consumption of an employed worker of age $n \leq \bar{n}_w$ with human capital e and assets a, who chooses asset level a' for next period. The value of being employed for this worker satisfies:

$$V(n, e, a) = \max_{a' \geq l} u(c^*(e, a, a')) + \beta [(1 - \delta)V(n + 1, e + 1, a') + \delta J(n + 1, e + 1, a')]$$ \hspace{1cm} (11)

where the last term incorporates the fact that with probability δ the worker has to search for a new job. The value of searching is given by

$$J(n, e, a) = \max_{\mu \in [0, 1]} \psi(\mu) + \mu U(n, e, a) + (1 - \mu)V(n, e, a)$$

which uses the timing convention that, with probability $1 - \mu$, search leads to a job in the same period, while, with probability μ, the worker remains unemployed whose value is given by

$$U(e, a, n) = \max_{a' \geq l} u(c^a(e, a, a')) + \beta J(n + 1, e, a')$$ \hspace{1cm} (12)

where $c^a(e, a, a') = \rho w(e) + (1 + r)a - a'$ denotes current period consumption when unemployed. In writing (11) and (12) we adopted the convention that

$$V(\bar{n}_w + 1, e, a) = U(\bar{n}_w + 1, e, a) = R(e, a),$$

where R denotes the value of retiring at $n = \bar{n}_w + 1$ with human capital e and assets a. This value is equal to

$$R(e, a) = \frac{1 - \beta^{\bar{n}_w}}{1 - \beta}c^a(e, a)$$
where $c^p(e, a) = \pi w(e) + \frac{1-\beta}{1-\beta}\bar{a}$ is the constant over time consumption level after retirement. At birth, workers have to search for a job, they have no experience and no assets so their welfare is given by $W_s \equiv J(1, 0, 0)$.

4.3 Calibration

The model is calibrated to US data at the quarterly frequency. The calibration targets are reported in Table 4, the resulting parameters values are in Table 5.

<table>
<thead>
<tr>
<th>Moment cond.</th>
<th>Model</th>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separation rate</td>
<td>.04</td>
<td>.04</td>
<td>JOLTS</td>
</tr>
<tr>
<td>Pensions repl. rate</td>
<td>.44</td>
<td>.44</td>
<td>OECD</td>
</tr>
<tr>
<td>Benefits repl. rate</td>
<td>.50</td>
<td>.50</td>
<td>SIPP</td>
</tr>
<tr>
<td>Wage profile:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30 years</td>
<td>1.00</td>
<td>1.00</td>
<td>CPS</td>
</tr>
<tr>
<td>31-40 years</td>
<td>1.43</td>
<td>1.43</td>
<td>CPS</td>
</tr>
<tr>
<td>41-50 years</td>
<td>1.59</td>
<td>1.58</td>
<td>CPS</td>
</tr>
<tr>
<td>Unemployment rate</td>
<td>.057</td>
<td>.057</td>
<td>BLS</td>
</tr>
<tr>
<td>Relative finding rates by age:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-30 years</td>
<td>1.00</td>
<td>1.00</td>
<td>CPS</td>
</tr>
<tr>
<td>31-40 years</td>
<td>.76</td>
<td>.78</td>
<td>CPS</td>
</tr>
<tr>
<td>41-50 years</td>
<td>.61</td>
<td>.60</td>
<td>CPS</td>
</tr>
<tr>
<td>51-60 years</td>
<td>.47</td>
<td>.49</td>
<td>CPS</td>
</tr>
<tr>
<td>Assets over mean labor income:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55-64 years</td>
<td>5.01</td>
<td>5.02</td>
<td>SCF</td>
</tr>
<tr>
<td>Minimum</td>
<td>-.103</td>
<td>-.103</td>
<td>CEX</td>
</tr>
</tbody>
</table>

Technology

We assume that workers are born at 20 years of age, they are active for 45 years in the labor market, $\bar{n}_w = 180$, and live twenty five years after retirement, $\bar{n}_r = 100$. The wage function $w(e)$ is chosen so that log wages are a cubic polynomial in labor market experience: $w(e) = \exp(\theta_1 e + \theta_2 e^2 + \theta_3 e^3)$. The parameters $\theta_i = 1, 2, 3$ are implicitly set to match the relative workers’ wages by age in Table 4. Roughly, wages increase by around 60 per cent over the life of an average worker. These estimates are obtained using data for male workers from the March CPS over the period 1990-2000, see the Appendix for details. The resulting $w(e)$ function is nondecreasing and concave in e. We set the separation rate δ to .04 which is consistent with data on average job tenure and reproduces the mean separation rate from JOLTS over the period 2005-2007. The borrowing limit l is set to be equal to minus ten percent of the mean labor income in the economy. This corresponds to the bottom decile of the distribution of workers’ net (liquid) assets in the Consumption Expenditure Survey (CEX) over the period 1990-2003.\(^\text{13}\) We later perform several

\(^{13}\)We define net liquid assets as the sum of savings, checking and brokerage accounts, market value of owned stocks and bonds minus the amount owed by the household, excluding mortgages.
robustness exercises relative to the choice of this target.

Search effort The search effort function $\psi(\mu)$ is a spline through the four points reported in Table 4. These points are (implicitly) calibrated to match an aggregate unemployment rate of 5.7 percent (which is the US average over the 2000-2009 period) and relative finding rates by age. Finding rates are estimated using a Cox duration model on CPS data over the period 1998-1999, see Appendix A.1.2 for details. Our estimates are in line with those in Low, Meghir, and Pistaferri (2010).

Roughly speaking, the duration of an unemployment spell for a worker in his twenties is half the analogous duration for a worker in his fifties, see Table 4. The resulting $\psi(\mu)$ function depicted in panel (a) of Figure 6 is concave.

Remaining preferences To have a reasonable life cycle profile for workers’ net worth, we set σ to target the median level of the ratio of net worth to mean annual labor income of employed workers with 55 to 64 years of age. This value is around 5, according to data from the Federal Reserve Board’s Survey of Consumer Finances in 2004. The model needs a value of σ close to 2 to match this target. We set β to .99, to match an annual interest rate of approximately 4%.

Policy parameters The UI benefit replacement rate ρ is set to .5, which follows Chetty (2008). The pensions replacement rate π is set to .44, which is in line with data for US male workers according to OECD (2007). The tax rate τ is set to keep government budget balanced. The implied tax rate is 9.53%, see Table 5.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_w</td>
<td>Periods in labor market</td>
<td>180</td>
</tr>
<tr>
<td>n_r</td>
<td>Periods retired</td>
<td>100</td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>.99</td>
</tr>
<tr>
<td>δ</td>
<td>Separation rate</td>
<td>.04</td>
</tr>
<tr>
<td>ρ</td>
<td>Benefit replacement rate</td>
<td>.5</td>
</tr>
<tr>
<td>π</td>
<td>Pensions replacement rate</td>
<td>.44</td>
</tr>
<tr>
<td>θ_1</td>
<td>$w(e)$ function parameter</td>
<td>0.0186</td>
</tr>
<tr>
<td>θ_2</td>
<td>$w(e)$ function parameter</td>
<td>$-1.4e^{-4}$</td>
</tr>
<tr>
<td>θ_3</td>
<td>$w(e)$ function parameter</td>
<td>$2.9e^{-7}$</td>
</tr>
<tr>
<td>l</td>
<td>Borrowing constraint</td>
<td>-.79</td>
</tr>
<tr>
<td>σ</td>
<td>Risk aversion</td>
<td>2.0</td>
</tr>
<tr>
<td>τ</td>
<td>Tax rate</td>
<td>.095</td>
</tr>
</tbody>
</table>

| $\psi(\mu)$ | Value of ψ at $\mu = [0, .05, .35, .65, .95]$ | $\psi(\mu)$ at $\mu = [3.2, 1.47, .63, .03, 0]$ |

Notes: The search effort function $\psi(\mu)$ is a spline defined by the points in the table.

and vehicle loans, see Appendix for further details.
4.4 Further properties of the calibrated economy

Figure 6 characterizes the age profile of key variables in the calibrated economy. Panel (b) deals with finding rates and unemployment duration, panel (c) with income, consumption and assets, panel (d) with consumption when employed and when unemployed. Finding rates decreases from 70% for workers in their twenties to 35% for workers in their mid fifties. Unemployed workers close to retirement have finding rate close to zero. This is because the ψ function in panel (a) has strictly positive first derivative for unemployment probability equal to one, so unemployed workers close to retirement always shirk and optimally choose $\mu = 1$. Mean annual labor income (which includes UI benefits) peaks in the mid forties and more than doubles over the life cycle. Two years before retirement, income falls due to the high unemployment rate. Average consumption peaks three years before income and remains roughly constant until the end of life. Mean assets are zero at the beginning of life and start to increase in the late thirties and keep increasing until retirement. These features are roughly in line with the data. Average consumption losses upon unemployment are close to 20% for workers in their twenties and they fall to 5% for workers in their mid forties. Consumption losses for workers close to retirement are slightly larger and just below 10%. This is due to the fact that their high unemployment duration spells affect almost permanently remaining life time labor income.

Panel (e) plots as a dashed line the expected marginal utility of consumption of an unemployed worker and, as a solid line, the unemployment elasticity to benefits. The expected marginal utility of consumption when unemployed is decreasing with age, since the average consumption of unemployed workers increases with age. The unemployment elasticity is close to .5 for workers in their twenties and it increases to around one and a half for workers in their forties and fifties. For workers close to retirement the elasticity drops to zero. This profile is remarkably similar to the estimated counterpart obtained in the unemployment duration analysis in Figure 1. Panel (f) plots the ratio of the expected marginal utility of consumption of an unemployed worker to one plus the unemployment elasticity to benefits, which is the model counterpart of ϱ_u in (1). This ratio is unambiguously decreasing with age. Its value is close to 2 for workers in their twenties and close to one fourth for workers in their forties and early fifties. This suggests that one unit of government money yields eight times larger welfare gains when assigned to young unemployed workers than to middle-aged unemployed workers.

Although, the distribution of assets is more dispersed in the data than in the simulated economy, the model matches reasonably well the fraction of unemployed young workers with negative assets. This is important because the value of the
Figure 6: Properties of laboratory economy

(a) Leisure function and its derivative
(b) Job finding and unemployment duration

(c) Assets and income
(d) Consumption of empl. and unempl.

(e) Marg. utility and unemployment elasticity
(f) Redistribution formula

Notes: Income and consumption are expressed as quarterly flows. Assets levels are expressed as proportion of mean annual labor income in the economy.
additional liquidity provided by unemployment insurance to unemployed workers depends on the number of unemployed workers who are financially constrained. Table 6 shows that the fraction of workers in their twenties and thirties with net wealth less than minus ten percent of annual labor income is close to ten percent, both in the data and in the model. The analogous fraction for workers of 40 to 60 years of age is 4 per cent in the data, while it is close to zero in the model. So this specification might underestimate the value of providing liquidity to middle aged workers. We later discuss how these statistics are affected by changing the borrowing limit l.

Table 6: Wealth distribution of unemployed workers

<table>
<thead>
<tr>
<th></th>
<th>20-40</th>
<th>40-60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>.094</td>
<td>.000</td>
</tr>
<tr>
<td>Net wealth</td>
<td>.081</td>
<td>.040</td>
</tr>
</tbody>
</table>

Notes: percentage of unemployed workers with assets lower than minus ten percent of average annual labor income. Data come from CEX over the 1990-2003 period.

5 Optimal life cycle unemployment insurance

Before analyzing age dependent policies, we study the problem of an agency that observes workers’ assets and maximizes initial worker’s utility by choosing benefits b, taxes t, and pensions p as a function of the entire worker’s history. Since assets are observable, we can think that the agency directly controls workers’ consumption. In practice we solve the dual problem of minimizing the cost to the agency (given by the sum of benefits and pensions net of income taxes) of providing a given expected utility to the worker. Government budget is balanced, exactly as in Section 4. We first characterize the solution to the first best problem where search effort is observable. We then turn to the more relevant case where, as in Hopenhayn and Nicolini (1997), search effort is unobservable and unemployment insurance induces moral hazard problems. The Appendix provides computational details.

5.1 Observable effort

When search effort is observable, no moral hazard problem is present and the agency can provide perfect consumption insurance to the worker. The cost of providing consumption c to a worker of age $n \leq \bar{n}_w$ with labor market experience e who is searching for a job is the difference between the present value of consumption
expenditures and the future income $Y(n, e, c)$ produced by the worker:

$$
\Upsilon(n, e, c) = \frac{1 - \beta n + n_{1} + 1 - n}{1 - \beta} c - Y(n, e, c)
$$

(13)

Search effort is set to maximize the utility value of Y. The right hand side in (13) is decreasing in c because higher consumption implies greater expenditures as well as less future income Y since search effort is reduced due an income effect. The optimal value of c, denoted by c^*, solves the equation $\Upsilon(1, 0, c^*) = 0$. The dotted line in panel (a) of Figure 11 characterizes the resulting age profile of job finding rates. Job finding rates are slightly increasing with age until two years before retirement, when they start to fall rapidly to zero. Since the ψ-function is concave, the agency would like to smooth search effort over time, but the opportunity cost of having an old worker unemployed is high due to their high productivity. So job finding rates are generally (mildly) increasing in age. Just before retirement, investing in search is unprofitable since little time is left to capitalize any investment. So job finding rates drop to zero.

5.2 Unobservable effort

When the agency can not observe search effort, unemployment insurance induces moral hazard problems. Following Spear and Srivastava (1987), we solve the problem using worker’s promised continuation utility as a sufficient statistic for worker’s history. Let $C^e(n, e, v)$ be the cost to the agency of providing continuation utility v to an employed worker of age $n \leq \bar{n}_w$ and labor market experience e. The function $C^u(n, e, v)$ is the analogous cost function for a worker searching for a job. Finally $C^r(v)$ denotes the cost at retirement. The function $C^e(n, e, v)$ satisfies:

$$
C^e(n, e, v) = \min_{t, v', v''} \left[-t + \beta \delta C^u(n + 1, e + 1, v'_u) + \beta (1 - \delta) C^e(n + 1, e + 1, v''_u) \right]
$$

s.t.

$$
v = u(w(e) - t) + \beta \delta v' + \beta (1 - \delta) v''.
$$

(14)

The agency choose taxes t (which reduces costs) and future promised utilities, subject to the promise keeping constraint in (14). The analogous cost function for an unemployed worker $C^u(n, e, v)$ solves

$$
C^u(n, e, v) = \min_{v, v_u} \left[(1 - \mu)C^e(n, e, v_e) + \mu [b + \beta C^u(n + 1, e, v'_u)] \right]
$$

s.t.

$$
v = \psi(\mu) + (1 - \mu)v_e + \mu v_u
$$

(16)

$$
\psi'(\mu) = v'_e - v'_u
$$

(17)

$$
v_u = u(b) + \beta v'_u
$$

(18)
The agency chooses benefits b and state contingent promised utilities, subject to the promise keeping constraint in (16), the incentive compatibility constraint for effort provision in (17), and the definition of the utility promised to an unemployed worker in (18). Since the worker retires at age $\bar{n}_w + 1$ we also have that

$$C^u(\bar{n}_w + 1, e, v) = C^e(\bar{n}_w + 1, e, v) = C^r(v).$$

Finally, the cost of promising utility v at retirement is equal to

$$C^r(v) = \frac{1 - \beta^{\bar{n}_r}}{1 - \beta} p$$

where p is the constant over time consumption level after retirement that solves:

$$v = \frac{1 - \beta^{\bar{n}_r}}{1 - \beta} u(p).$$

The maximal utility, W^*, attained by the worker at birth is obtained by solving

$$C^u(1, 0, W^*) = 0.$$
Figure 7: Optimal unemployment insurance: simulated histories

Notes: Panels (a) and (b) are simulated histories for a permanently unemployed worker who becomes first unemployed at 20 and 55 years of age, respectively. Panel (c) and (d) plots net replacement rates and job finding rates for the two previous types of workers and for a worker with 55 years of age and $e = 0$. Unemployment duration is in quarters.

job. Taxes are designed to smooth the age profile of consumption, so taxes rates are increasing in age. But with moral hazard, the agency can not perfectly insure workers against the risk of unemployment. So consumption is on average higher when employed than when unemployed. Consumption losses are overall small (close to one percent), and slightly increasing with age. This is again due to the the high opportunity cost of having an old skilled worker unemployed. The age profile of job finding rates is generally increasing until two years before retirement and closely mimics the analogous profile of the first best problem.
To sum up, after designing unemployment insurance optimally, replacement rates are on average decreasing with age while tax rates are increasing. Job finding rates and consumption losses are also increasing with age. This is at variance with existing US evidence and suggests that age dependent unemployment insurance could be welfare improving. Table 7 compares the welfare gains under the policy with observable and unobservable search effort. Differences in welfare gains are small, but gains relative to the status quo are sizable, roughly equivalent to a 4.5 per cent increase in per period consumption.

6 Age dependent policies

In the previous Section the government could condition transfers on workers’ entire labor market history as well as on their assets, age, experience, and employment status. The government was restricted just by the incentive compatibility constraint for the provision of search effort. We now study age dependent policies. We assume that unemployment replacement rates, ρ_n, and labor income tax rates, τ_n, are a Chebyshev polynomial in age of the fifth and third order, respectively. We search for the polynomial coefficients that maximize workers utility at birth and check that results are unaffected by allowing for higher order polynomials. Pensions replacement rates are left unchanged, while tax levels are always adjusted to keep government budget balanced. We first focus on the optimal age-dependent replacement rate policy and then allow income tax rates also to vary with age. For each policy, we study how replacement rate and tax rates vary by age and the properties of the ϱ_n ratio in (1). We then quantify the gains of age dependent policies and compare them with those
attained under the optimal life cycle unemployment insurance problem.

6.1 Age-dependent policies
The solid lines in the four panels of Figure 9 characterize the economy where unemployment benefits replacement rates are allowed to vary with age. Dotted lines correspond to the baseline economy of Section 4. Panel (a) focuses on the age profile of unemployment replacement rate, panel (b) on the profile of the average marginal utility of consumption when unemployed, panel (c) on the unemployment elasticity to benefits, and panel (d) on the ratio of the average marginal utility of consumption when unemployed to one plus the unemployment elasticity, which is the model counterpart of g_n in (1).

Figure 9: Age dependent replacement rates only

(a) Replacement rates

(b) Marginal utility when unemployed

(c) Unemployment elasticity

(d) Redistribution formula
Under the optimal age dependent policy, replacement rates are increased from the current value of 50 per cent to around 80 percent for workers in their mid twenties and to 70 per cent for workers in their thirties. Workers in their forties and in their fifties, instead, obtain benefits equal to 40 and 20 percent of their past wage, respectively. The age profile of the average marginal utility of consumption when unemployed is substantially flatter than in the baseline economy. The unemployment elasticity to benefits, \(\eta_n \), is generally smaller than in the baseline economy and strongly decreasing in age. Because of this, the age profile of the \(\varrho_n \) ratio is now substantially flatter than in the baseline economy.

Figure 10 is analogous to Figure 9 but where now we also allow labor income tax rates to vary with age. The age profile of replacement rates is little changed relative to Figure 9. Taxes rates are generally increasing with age until the mid fifties and decreasing during the last ten years of labor market activity. Taxes are implicitly designed to smooth the age profile of consumption. The age profile of the marginal utility of consumption when unemployed and of the unemployment elasticity to benefits become substantially flatter than in the baseline economy. As a result the age profile of the model counterpart of \(\varrho_n \) becomes almost invariant to age, which indicates that this ratio correctly identifies all possible gains from redistributing unemployment insurance over the life-cycle.

6.2 Welfare comparisons

Figure 11 characterizes the age profile of job finding rates (panel a) and consumption (panel b) in the baseline economy (solid line), in the economy with the combined age dependent policy for benefits and taxes (dashed line) and in the fist best economy (dotted line). Age profiles do differ in the three economies. In the first best economy and in the age dependent policy economy job finding rates are mildly increasing with age and consumption is relatively flat. In the baseline economy job finding rate are strongly decreasing in age while consumption is increasing.

Table 7 quantifies the welfare gains under the different allocations.\(^\text{14}\) The first best policy yields welfare gains equivalent to a 4.4% increase in consumption. The economy with unobservable search effort yields similar welfare gains. We normalize these gains to 100% and compare them with those attained under alternative age dependent policies. When allowing for just either age-dependent replacement rates, welfare gains are approximately equivalent to a 1 percent increase in life time

\(^{14}\)In the baseline economy average unemployment replacement rates might not be optimal. To better isolate the effects of age dependent unemployment insurance, welfare gains are always measured relative to the economy with an optimal unemployment replacement rate. In practice, as many others (see Davidson and Woodbury 1997, Shimer and Werning 2007, Pavoni 2007, and Chetty 2008), we find that the optimal replacement rate is close to the actual US level—and equal to 0.45. Differences with the baseline economy of Section 4 are therefore minimal.
consumption. When we combine age-dependent unemployment insurance with age-dependent taxes, gains go up to an equivalent of a 4 percent increase in life time consumption, which implies some complementarities between the two polices. Age-dependent policies reproduces 80% of the welfare gains attained under the optimal unemployment insurance program.

To better identify the source of the welfare gains it is also useful to study the economy where unemployment replacement rates are maintained at the current US level and labor income tax rates are allowed to vary with age. In this economy, tax rates are implicitly set to smooth the age profile of net labor income. So consumption is relatively smooth over the life cycle but not across employment states. The economy with age dependent income tax rates yields welfare gains equivalent to two thirds of the gains attained under the combined age dependent policy for
Figure 11: Comparisons between age-dependent and optimal policy

Notes: In the age dependent economy replacement rates and tax rates are allowed to vary by age. The first best economy corresponds to the problem studied in Section 5.1. The baseline economy is the calibrated economy of Section 4.

Table 7: Welfare comparisons

<table>
<thead>
<tr>
<th>Economy</th>
<th>Welfare gains (%)</th>
<th>Consum. equiv. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline economy with optimal replacement rate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Age dependent replacement rate</td>
<td>21.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Age dependent tax rate</td>
<td>70.8</td>
<td>3.1</td>
</tr>
<tr>
<td>Age dependent replacement rate and tax rate</td>
<td>92.7</td>
<td>4.1</td>
</tr>
<tr>
<td>Optimal life cycle unemployment insurance</td>
<td>100.0</td>
<td>4.4</td>
</tr>
<tr>
<td>First best (observable effort)</td>
<td>105.5</td>
<td>4.6</td>
</tr>
</tbody>
</table>

replacement rates and taxes, with the remaining one third due to age dependent replacement rates. This indicates that there are sizeable gains from better smoothing consumption across employment states over the life cycle.

7 Alternative specifications

We next discuss the robustness of results to alternative specifications of the baseline model. We first allow the search effort function ψ to vary with age, and then study the effects of relaxing the borrowing constraint l.

32
7.1 Age dependent ψ-function

In the baseline economy, workers of different age are equally able to find a job. In practice firms demand for workers of different age might differ and finding a job after displacement could be very costly for old workers. This might imply that old workers require more unemployment insurance than young workers do. To account for possible differences in the demand for workers of different age we follow the same logic as in Section 2 and we allow the search effort function to vary by age so that

$$\ln \psi(n, \mu) = \gamma_0 + (\gamma_1 \mu + \gamma_2 \mu^2) \exp (\alpha_1 n + \alpha_2 n^2). \quad (20)$$

A positive α_1 coefficient means that finding a job is more costly for an old than for a young worker. We calibrate this economy to match the detailed age profile of job finding rates reported in Table 8. The other targets are as in Table 4.

Table 8: Calibration for economy with age varying ψ-function: targets and fits

<table>
<thead>
<tr>
<th>Moment cond.</th>
<th>Model</th>
<th>Data</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment</td>
<td>0.057</td>
<td>0.057</td>
<td>BLS</td>
</tr>
<tr>
<td>Relative finding rates by age:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-29 years</td>
<td>1.000</td>
<td>1.000</td>
<td>CPS</td>
</tr>
<tr>
<td>30-39 years</td>
<td>0.80</td>
<td>0.81</td>
<td>CPS</td>
</tr>
<tr>
<td>40-44 years</td>
<td>0.68</td>
<td>0.66</td>
<td>CPS</td>
</tr>
<tr>
<td>45-49 years</td>
<td>0.51</td>
<td>0.54</td>
<td>CPS</td>
</tr>
<tr>
<td>50-62 years</td>
<td>0.45</td>
<td>0.43</td>
<td>CPS</td>
</tr>
<tr>
<td>Asset level</td>
<td>5.01</td>
<td>4.84</td>
<td>SCF</td>
</tr>
</tbody>
</table>

Notes: Other targets are as in Table 4.

But this economy no longer matches the age profile of the unemployment elasticity to benefits. As shown by the dotted line in panel (a) of Figure 12 this elasticity is now decreasing with age. There are two alternative ways of interpreting this result. One is that the search function in (20) is not an accurate description of the data. Another is that the demand for old unemployed workers can not be too low because otherwise the unemployment of workers in their forties and fifties would not be as responsive to changes in unemployment benefits as indicated by the empirical analysis in Section 3.

Panel (b) of Figure 12 plots the age profile of the optimal age dependent replacement rates of this economy. Interestingly unemployment replacement rates are still greater for workers in their twenties and early thirties than for workers in their forties and early fifties. But now replacement are no longer monotonically decreasing in age. They first decrease until the early fifties and then increase until retirement age. This is partly due to the fact that benefits are insuring unemployed workers.
close to retirement for their long lasting unemployment spells and their pronounced
collection losses upon displacement.

Figure 12: Economy with age varying ψ-function

(a) Unemployment elasticity

(b) Age dependent replacement and tax rates

7.2 Relaxing the borrowing limit

When workers are not financially constrained, UI benefits insure workers just against
the loss in permanent income due to unemployment. Since workers spend just a
small fraction of their lifetime in unemployment, this income loss is modest and
unemployment insurance is less valuable. But we find that even in this world it is
optimal to have unemployment replacement rate to decrease with age. To see this,
we set the borrowing limit l at its natural level, so no worker in the economy is
financially constrained. The economy has some counterfactual properties. The age
profile of consumption is still increasing due to the accumulation of precautionary
savings early in life, but consumption increases by just 5% over life time. Moreover
consumption losses upon unemployment are small (around 3%) and independent of
age. Yet we find that even in this economy unemployment replacement rates should
decrease with age while labor income tax should increase. Figure 13 shows the
optimal profile of age dependent unemployment replacement rates and labor income
tax rates. Replacement rates are now substantially smaller than the current US
level, but they are still monotonically decreasing in age. This is again because the
moral hazard problem of unemployment insurance is less severe for young workers
and because young workers are in the process of accumulating precautionary savings
and so have less ability to smooth consumption during unemployment.
8 Conclusions

Unemployed young workers have a high marginal utility from consumption, experience large consumption losses upon unemployment, and they respond little to changes in unemployment insurance benefits. This indicates that unemployment insurance is highly valuable to them while the induced moral hazard problem is mild. Using a life cycle model with unemployment risk and endogenous search effort, we find that allowing unemployment replacement rates and other government transfers to decline with age yields sizeable welfare gains which amount to around two thirds of the gains attained under the constrained optimal scheme for unemployment insurance over the life cycle. Under the optimal age dependent policy, replacement rates are increased from the current value of 50 per cent to around 80 percent for workers in their mid twenties and to 70 per cent for workers in their thirties. Workers in their forties and fifties, instead, obtain benefits equal to 40 and 20 percent of their past wage, respectively. The quantitative analysis also shows that, after searching for the optimal age dependent policy, the ratio of the marginal utility of consumption when unemployed to the unemployment elasticity to unemployment benefits becomes almost invariant across age groups, which indicates that this ratio correctly identifies possible gains from redistributing unemployment insurance over the life-cycle. Intuitively the numerator of the ratio measures the marginal value of the additional insurance provided to unemployed workers, the denominator the incentive costs of the induced moral hazard problem. Results are robust to the introduction of possible differences in the demand for workers of different age.

Here we have focused on how unemployment insurance benefits should vary over the life cycle. But the analysis could be extended to discuss several other labor mar-
ket institutions, including policies for employment protection, severance payments, benefits duration and eligibility, and poverty assistance. Along some of these dimensions it could well turn out that old workers require more protection than young workers. For example old workers might have accumulated more job specific human capital, which makes wage losses upon displacement larger for old than for young workers. This would require giving old workers higher severance payments to insure the risk of job loss. It could also be that poverty assistance is more valuable and less distortionary for old than for young workers due to a greater exogenous risk of becoming unemployable and ending up in poverty. This again emphasizes the importance of taking a life cycle perspective in designing labor market institutions.

Future research should also evaluate the welfare gains of age dependent policies relative to unemployment insurance arrangements different from those currently in place in the US. In particular Feldstein and Altman (1998) and Feldstein (2005) have sponsored the introduction of individual saving accounts to reduce the moral hazard costs of unemployment insurance. The idea is that when employed the worker saves a fraction of his labor income in an individual saving account which the worker uses when unemployed to finance the UI benefits payments dictated by the current US system. At retirement, any residual positive balance is transferred back to the worker. The quantitative welfare gains of savings accounts systems have been studied by Ferrada (2010) and Setty (2010). Our robustness exercise shows that replacement rates should decline with age also when workers can freely borrow to smooth consumption during unemployment. Since savings accounts are essentially a means of providing greater liquidity to unemployed workers, this suggests that there should be welfare gains from having unemployment replacement rates decrease with age also in plausible implementations of the saving accounts proposal.

References

Farhi, E. and I. Werning (2010). Insurance and taxation over the life cycle. Manuscript, Harvard University and MIT.

